NAVAL POSTGRADUATE SCHOOL

1994

Monterey, California

THESIS

THE WORLD MODELER:

THE NEXUS BETWEEN JANUS AND BATTLEFIELD
DISTRIBUTED SIMULATION-DEVELOPMENTAL
by
Matthew A. Johnson

September 1994

Thesis Advisor: David Pratt
Second Reader: Bert Lundy

Approved for public release; distribution is unlimited.

202 013

S //

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time reviewing instructions, searching existing data sources
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
September 1994 Master’s Thesis
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

THE WORLD MODELER THE NEXUS BETWEEN JANUS AND
BATTLEFIELD DISTRIBUTED SIMULATION-DEVELOPMENTAL
(U
6. AUTHOR(S)

Johnson, Matthew A.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Naval Postgraduate School REPORT NUMBER

Monterey, CA 93943-5000

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
- The views expressed in this thesis are those of the author and do not reflect the official policy or position

of the Department of Defense or the United States Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT_ . . . L 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited.

13. ABSTRACT (Maxim.um 200 words)
The United States Army has two disparate combat models; Janus and Battlefield Distributed

Simulation-Developmental (BDS-D). Both facilitate training, tactical development and weapons analysis.
The major problem addressed by this research is that entities existing in the Janus Combat Modeler cannot
interact with entities in BDS-D. If interaction is made possible, it would produce a synergy between the
combined models, each model bringing advantages to the other.

The approach taken was first to identify the differences between the two environments of Janus and
BDS-D. Next, a software architecture was developed to store and manipulate data about both simulations.
A communications architecture was created to allow data flow between the two environments. Finally,
algorithms were developed to allow for interaction between Janus and BDS-D entities.

The result was to integrate Janus, a two dimensional, constructive combat model, into the three
dimensional, entity-level virtual battlefield of BDS-D. Janus entities interact in real time with other
entities in the BDS-D virtual world. The finished product, the World Modeler, is a software system
operating on a low-end Silicon Graphics workstation with TCP/IP and UDP/IP networking capabilities.

14. SUBJECT TERMS]]]]] 15. NUMBER OF PAGES
DIS, distributed, interactive, simulation, Janus, BDS-D, dead reckoning 77
TCP/IP, UDP/IP, [16. PRICE GODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION .]20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified UL

NSN 7540-01-280-5500 ‘ Standard Form 298 (Rev. 2-89)

1 Prescribed by ANSI Std. 239-18

Approved for public release; distribution is unlimited

THE WORLD MODELER:
THE NEXUS BETWEEN JANUS AND
BATTLEFIELD DISTRIBUTED SIMULATION-DEVELOPMENTAL

Matthew A. Johnson
Captain, United States Army
B.S., United States Military Academy, 1984

Submitted in partial fulfillment of the
requirements for the degree of

Accesion For

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL o

September 1994
Author: WM //‘ G\jé-\ {
Matthew A. Johnson A’('

Approved By: . —\//’L g~

David R. Pratt, Thesis Advisor

702 A

G M. Lundy, Sec eader

TN

Ted Lewis; Chairman,
Department of Computer Science

iii

ABSTRACT

The United States Army has two disparate combat models; Janus and Battlefield
Distributed Simulation-Developmental (BDS-D). Both facilitate training, tactical
development and weapons analysis. The major problem addressed by this research is that
entities existing in the Janus Combat Modeler cannot interact with entities in BDS-D. If
interaction is made possible, it would produce a synergy between the combined models,
each model bringing advantages to the other.

The approach taken was first to identify the differences between the two environments
of Janus and BDS-D. Next, a software architecture was developed to store and manipulate
data about both simulations. A communications architecture was created to allow data flow
between the two environments. Finally, algorithms were developed to allow for interaction
between Janus and BDS-D entities.

The result was to integrate Janus, a two dimensional, constructive combat model, into

_the three dimensional, entity-level virtual battlefield of BDS-D. Janus entities interact in
real time with other entities in the BDS-D virtual world. The finished product, the World
Modeler, is a software system operating on a low-end Silicon Graphics workstation with

TCP/IP and UDP/IP networking capabilities.

vi

[INTRODUCTION ...coiiiiiieiiiiiiiee ettt e et e e s eeabesbeesseesaesnseansannens |
A. OBIJECTIVEccccovii. ettt ettt st st e ettt e et et e e eete s eeerneaesbaeaaas 1

B. BACKGROUNDcccccovniiriiiici e ettt st eas 1

C. MOTIVATION w..ooocoiivieeerimmmnisnssnseeeeeeesssssssssssesse st 2
D. ORGANIZATION OF THESIS......cccooitiititinienenteeiectene e sreeee e saeenaees 2

II. JANUS, BDS-D, AND NPSNET OVERVIEWccccoiiniiniiiieicniinientceesreseeeine 5
Al JANUS Lttt sttt sa et r e e sb e e s 5

I. RAND MODIFICATIONS TO JANUScoiiiiiieieeertcteseesresesaenene 6

a. Janus’Algorithms.......................‘......................................, 6

b, Janus Terrain.....co.coiiiiiiiiiiei ittt 6

¢. Adding Hooks to Communicate with the World Modeler................... 6

2. HYBRID JANUS 4.0...iiiiiiiiit ittt 7
BATTLEFIELD DISTRIBUTED SIMULATION - DEVELOPMENTAL...... 7
NPSNET......cocoiiiiiiiiiiiinee ettt ettt eene s e aen e 7
PREVIOUS WORKcooiiitiiaiiit ettt te s e st 8

Lo JANUS-3D oo e eeeseeeess s eesesesesesssssenee e eeseeeeereee 8

2. Eagle/BDS-D ...ttt sttt 8

E. SUMMARY ...ttt ettt be e 9

III. WORLD MODELER OVERVIEWccciiiiiiiiiiiiietcteetteie e te et nee e eans 11
A. INITTIALIZATION OF THE WORLD MODELER............cccccceceinirrrreriennnne 13

B. WORLD MODELER MAIN APPLICATION LOOPccocevvvvveirieriennne 14

1. Process Janus MESSaZES......cccccvuiiiiriiiiiiiiieiieie e svs e re et svee e e 15

2. Update Janus about BDS-D Entities.....c..ccccccevvniinininiieninenreceeerennes 15

3. Process BDS-D Entity Informationccecooeveniniiiiiiniieiceieeeeeee, 16

4. Update World Modeler ClocK.......c.coviiiiiiiniiiiieteeeeere e 16

5. Dead Reckon Enities......ocoiiiiiiiiiiiiiiecinieeteeee e 16

TABLE OF CONTENTS

vii

6. Update BDS-D Virtual Worldcccocovovimiiiieeeceeeeeeeeeeeeeee e, 16

7. Refresh World Modeler Mapocooiiiiiiiiiiicee et 17

C. SUMMARY Lottt ee et e e, 17

IV. NETWORK MANAGEMENT...........coooverooermreooosooeeooo et 19
A. NETWORK ARCHICTECTURE..........cccocooviiiiieecieeeeeeeeeeeeee e, 19

B. CONNECTION BETWEEN JANUS AND THE WORLD MODELER......... 19

C. CONNECTION BETWEEN BDS-D AND THE WORLD MODELER 20

D. UPDATING THE BDS-D ENVIRONMENTcooovmioimmeeeeeeeeoeeee, 21

E. UPDATING JANUS ..ottt e, 22

F. SUMMARY L., 22

V. DEAD RECKONING IN THE WORLD MODELERc.coeoeoooeoeeoeo 23
A. DEAD RECKONING BDS-D ENTITIESc.coietemneeeeeeeeeeeeeeeeeeen, 23

1. Process Entity State PDU ..o, 23

2. Update Entity POSIIONScoovuiiiiiiiiiiiieiieec e 23

3. Updating JAnUS........cooimiiiiieiiiicceeeeeeeeeeee e, 24

B. DEAD RECKONING JANUS ENTITIEScooooeoveeeeeen. oo 24

1. Private Model of Janus Entities.ccoooeeeeereeeeeeeee oo 24

2. Calculating Janus Entity POSIONSooovinmeieeeeeeeeeeeeeeeee, 24

3. Updating BDS-D ..ottt 25

C. SUMMARY Lo, 25

VI. JANUS ENTITY/TERRAIN RECONCILIATION ..o 27
A. COMPUTATION OF JANUS ENTITY ORIENTATIONocoovovovomom, 27

1. Janus Entity Posture........: ... 27

2. BDS-D Entity POSIUI®cooiiiitiiiii e 27

3. World Modeler Entity POSWI€cc.oooveoeiieeeeeooeoeeeeoe oo 28

4. Conversion Between BDS-D and World Modeler Posture...................... 28
Conversion Between Janus and World Modeler Posture...........ocoovovooon.. 28

B. CREATING A THREE DIMENSIONAL VELOCITY VECTOR.................. 29

viii

s

-

C. COORDINATE CONVERSIONcooiiiiiiiece et 29

1. Grid Coordinate Translation Between Janus and the World Modeler....... 30

2. Converting Entity Positions Between Janus and the World Modeler....... 30

3. Converting Entity Positions Between World Modeler and BDS-D.......... 30

D. SUMMARY ..cosiiriimrrriiemmnseessmsneesesessisssssesesssssesessssesssssssesssssssesssensssssssnes 30

VII. EVENT ARBITRATIONccooiiiiiiiiit ittt easeseesnesesessseens 33
A. JANUS SI:IOOTS BDS Dottt 33

B. JANUS SHOOTS JANUS ..ottt st tetee e sen et e e s saee s 33

C. BDS-D SHOOTS JANUS ...ttt senesseseee s 34

D. BDS-D SHOOTS BDS-D....oocociiiriiiiiininineneeeeeseeenenans rerrreree et 34

E. JANUS MUNITION SELECTIONccccioiiiiiiiiniiiienecie ettt see e 35

F. SUMMARY ..ottt ettt s r s see s e sn e sasae s 35
VIILRESULTS ...ttt et st s e 37
A, PERFORMANCEccoociiiiiiiiie ettt sttt st sne st ae e 37

1. Testing World Modeler Entity State PDU Output........ccooceevvereieeenenneen. 37

2. MethodologYccviiiriiiii s 37

b. Results....cccccoorernnn. ettt ettt et eat e b ettt te s et es et e b e tetere et enseneatareneas 38

2. Visual Display of Janus Entities in BDS-Dcccooiciiiiiinniiee. 39

B. ACHIEVEMENT OF GOALS ...ttt 40

C. SUMMARY ..ottt ettt ettt 40

IX. CONCLUSIONS AND AREAS FOR FUTURE RESEARCHcccccecevvenenen. 41
A, CONCLUSIONSottt ettt e et et e e s s re e essseseesaanseas 41
B. SPECIFIC CONTRIBUTIONS OF THIS WORKccovevirirercieeeeeeen, 41

C. AREAS OF FUTURE REASEARCHccocoiiiiiiiiee et 42

1. Implement Reactive Behaviors. ..., 42

2. Increased Fidelity of Discrete Event Arbitration...........ccecceeveeviecveeneennenn, 42

3. Sensor MOAEIHNEGcviiiiiiiiiieriee ettt 43
APPENDIX A. WORLD MODELER USER’S GUIDE.......ccccccoviiiiieeieieeeee e 45

A, STARTING JANUS ..ottt s s 45
B. STARTING THE WORLD MODELERccccocooiiiiiicieeee e, 46
C. BRINGING THE SYSTEMS DOWN. ..ot 47
APPENDIX B. PROTOCOL BETWEEN JANUS AND THE WORLD MODELER 49
LIST OF REFERENCES ...t 61

I. INTRODUCTION

A. OBJECTIVE

The objective of this research effort was to develop an interface system (the World
Modeler) which allows Janus to interact in the Battlefield Distributed Simulation-
Developmental environment (BDS-D). The success of this project was measured by the

World Modeler’s ability to accurately and efficiently integrate Janus entities into BDS-D.

B. BACKGROUND

The Army is preparing for the 21st Century. A program called the Louisiana
Maneuvers has been developed as a structured process to investigate an;:l integrate future
technologies into the Army. Louisiana Maneuvers is named after a similar effort conducted
just prior to World War II. New equipment and tactics were available at that time, but had
not been tested in battle. Numerous force-on-force maneuvers were conducted in the

Carolinas to test and validate the new technology and tactics before entering the war.

The expense of fielding such forces for the purpose of testing and analyzing future
technologies is immense. The Louisiana Maneuvers of today are conducted in Army Battle
Labs located throughout the United States; interconnected through Distributed Interactive
Simulation (DIS). This connectivity creates a disbursed, three dimensional synthetic
environment (BDS-D) which allows for cost effective and timely analysis of future

technologies.[ARMY93]

The Computer Science Department at the Naval Postgraduate School has been a
principle investigator of the DIS synthetic environment. The department has developed a
low-cost, real time, high resolution visual simulator, NPSNET, which is DIS compliant.
[PRATOI3] With its networking abilities, NPSNET can enter and interact in the BDS-D
world. This project utilizes NPSNET as a surrogate crew station in place of a more

expensive BDS-D crew station.

C. MOTIVATION

“Louisiana Maneuvers and Battle Labs enable the Army’s leaders to see into the
future and develop alternatives so that resources, programs, and policies can be adjusted
whenever necessary”[ARMY95]. BDS-D is the battlefield to develop and test the Army of
the future. However, the need exists to populate the virtual world of BDS-D. Using one
computer system to cmulate one entity would quickly become cost prohibitive. Attempting
to integrate current COmbi.lt simulations which control large numbers of entities appears to
be a cost effective solution this problem. Janus is a viable candidate with its ability to

control up to 1200 entities per computer platform.

Advance Technology Demonstrations (ATDs) are being developed and tested in the
Battle Labs to evaluate future systems. The Janus - BDS-D connection will provide a “...
synthetic simulation environment for high fidelity analysis of division sized engagements
in... Louisiana Manegvers.”[Millon]. Deeper analytical insights may be achieved by
viewing a Janus battle in the three dimensional world of BDS-D. Additionally, observing
how man-in-the-loop simulators effect the outcome of a Janus battle would lend additional
insight to the current analysis of Janus scenarios. The World Modeler is the lynch-pin

which brings to fruition the synergistic effects of the Janus -BDS-D alliance.

D. ORGANIZATION OF THESIS

This thesis is organized into nine chapters. This chapter provides the background
and motivation of the work performed. Chapter II provides an overview of the Janus
Combat Modeler, BDS-D, and NPSNET, while an overview of the World Modeler to
include its relationship with Janus and BDS-D is in Chapter II1L. The major functions of the
World Modeler: network management, dead reckoning, entity and terrain reconciliation,
and event arbitrations are discussed in Chapters 1V through VII respectively. Chapter VIII
provides information on the run-time performance of the World Modeler with respect to

Janus entity integration into BDS-D along with its limitations and applications. Finally, the

(8]

Appendices consist of the World Modeler user’s guide and the local communications

protocol used between Janus and the World Modeler.

II. JANUS, BDS-D, AND NPSNET OVERVIEW

A. JANUS

The Janus Combat Modeler, as described in [JANU93] is a constructive, monolithic
combat model used primarily by the United States Army. Its main purpose is two fold.
First, it is used as a combat development tool, analyzing both weapon system and tactics.
Second, Janus is used as a training tool by leaders for the purpose of tactics training and
staff planning.

Janus portrays both entity level systems as well as aggregate level such as platoon
or batteries. User’s of Janus develop combat scenarios consisting of force-on-force
engagements between two opposing forces. Due to the stochastic modeling of entity
engagements, executions (referred to as runs) of the same scenario will produce different
results. The study of several runs of the same scenario lend to the analysis of the tactics,
force structure and weapons systems used. This analysis is used both for training and
combat development.

Janus employs high resolution algorithms which accurately model numerous
weapons platforms; ranging from a dismounted riflemen to a MLRS battery. This high
fidelity of modeling allows Janus to be a valid environment for combat development.
Military systems partaking in ground combat is the primary modeling focus of Janus.

Janus is monolithic in nature, operating on one computer system. Its numerous two
dimensional displays provide the military expert with a highly detailed, graphic display of
the battlefield. User interaction is through a four button mouse called a puck and the two
dimensional display.

The Janus model is made up of sixteen FORTRAN executable programs and
associated databases. Janus can operate on two platforms. One version uses Digital VAX
machines utilizing the VMS operating system and X-Windows workstations. The second
version runs using the UNIX operation system and employs either Dextranase or X-

Windows workstations. TRADOC Analysis Command at White Sands Missile Range

(TRAC-WSMR) is the Army agency responsible for maintenance and modification of
Janus.

This research effort utilized the UNIX based Janus version 4.0 (Janus). This version
utilizes polygonal terrain representation which is a significant difference from previous

versions of Janus.

1. RAND MODIFICATIONS TO JANUS

The Arroyo Center of RAND is the U.S. Army’s federally funded research and
development center for analysis and studies. Through the Arroyo Center, RAND was

tasked to make modifications to Janus to support its integration with BDS-D.

a. Janus Algorithms

RAND incorporated higher resolution algorithms for target acquisition,
Probability of Hit (PH), and Probability of Kill (PK) into Janus. RAND replaced the NVL-
1D sensor model with the NVL-2D sensor model and the PH and PK algorithms with those

of Army Materiel Systems Analysis Activity’s (AMSAA) Groundwars.[JOHNS]

b. . Janus Terrain

RAND modified Janus terrain representation to minimize differences
between BDS-D and Janus terrain. If terrain representations are different among
heterogeneous simulators participating in the same exercise, it is possible for “...game
players to ‘cheat’ by using non-realistic ‘blind spots’... created by incox.lstancies in the
terrain models. [ZOBRIS] The result of the modifications reduced these blind spots,

providing a level battlefield among heterogeneous simulators.

c. Adding Hooks to Communicate with the World Modeler

A modular program, called the Name Translator, was built to add
communication ‘hooks” into the main databases of Janus. This translator adds BDS-D
entities into the proper Janus databases. It also retrieves all pertinent Janus entity state and

event information and passes it to the World Modeler. [MARTI]

6

2. HYBRID JANUS 4.0

The result of RAND’s modifications is a hybrid Janus combat model that runs on
UNIX based, Hewlett Packard Workétations. This version of Janus is used to connect to

BDS-D via the World Modeler. All future references to Janus refer to this hybrid Janus 4.0.

B. BATTLEFIELD DISTRIBUTED SIMULATION - DEVELOPMENTAL

BDS-D is an Army program designed to equip the Louisiana Maneuver Battle Labs
with the latest distributed interactive virtual reality simulations systems. BDS-D will test
future weapon systems and technologies, proposed force structure, and tactics. This
concept is expected to save millions of dollars in development costs, and is expected to
reduce the time it takes to development systems by a factor of five. BDS-D provides a
virtual battlefield where man-in-the-loop simulators and other intelligent platforms can
interact and thoroughly test the future technology. If the applied technology appears valid,

continued investment occurs. If not, large amounts of money have been saved. [McDon93]

BDS-D represents the most state-of-the-art DIS synthetic environment. Through
DIS, geographically dispérsed simulations are interconnected and interact in BDS-D.
Advance Technology Demonstrations (ATDs) are continually upgrading this environment.

Linking Janus to DIS via the World Modeler is one such ATD.

C. NPSNET

Developed and maintained at the Computer Science Department, Naval
Postgraduate School, NPSNETIV [PRAT93a] is a low-cost, student written, entity
simulator which utilizes the Silicon Graphics IRIS family of computers. NPSNET is
compliant with DIS 2.0.3 protocol standards and operates in real time in the BDS-D

synthetic environment. [MACED]

NPSNET was chosen as a surrogate crew station for experimentation and testing in
the BDS-D environment. NPSNET provides a portal into the BDS-D, allowing us to

visually see Janus entity actions in three dimensions. With NPSNET, we are able to view

Janus entities interact with NPSNET and ModSAF entities in BDS-D. The NPSNET

simulator proves to be invaluable in the integration of Janus and BDS-D.
D. PREVIOUS WORK

1. J anus.-3D

Janus-3D was the first successful attempt of integrating the Janus Combat Modeler
with a three dimensional display. This project created a scripting tool which gathered post
processing information from Janus. This script was then replayed in three dimensions using
NPSNET as the display environment. User’s could travel through the Janus battle and see
what had occurred. Interaction was not possible. However, this gave Janus analysts the first

three dimensional view of a Janus scenario.

This project also made the first attempt of displaying Janus 2.0 entities in real-time
in NPSNET. The first non-VAX version had just been produced by TRAC-WSMR in 1992.
This first generation UNIX based system (Janus(A)) ran on a Sun Workstation. Janus(A)
used ethernet connections to display the two dimensional Janus screens on other monitors.
Thus, Janus entity data existed on the ethernet. The next logical step was to capture the data
and transfer it into a structured packet that NPSNET understood. The result was a three
dimensional, real-time display of a Janus scenario. The user could not interact with the
Janus entities. Also Janus did not receive any information about NPSNET entities.

[WALTO92]

2. Eagle/BDS-D

Eagle/BDS-D is an effort to link the constructive combat model Eagle with the
BDS-D environment. This effort follows the successful effort of integrating Eagle with
SIMNET, an entity level, three dimensional combat simulator that operates in real-time.
Eagle is an aggregate corps/division combat model developed by TRADOC Analysis

Command (TRAC). It runs faster than real time and is used as a combat analysis tool. Eagle

units were disaggregated and put into the SIMNET environment. Disaggregated units in
SIMNET operated in real-time and battled against other Eagle entities.
The current effort is to link Eagle with the entity level real-time virtual world of

BDS-D. Though final testing has not occurred, interim demonstrations of the project have

been successful. [KARR]

E. SUMMARY

Previous work has shown that it is possible to integrate heterogeneous combat
models. We are going to extend this work to Janus and BDS-D; two disparate Army combat
models used to facilitate training and combat development. NPSNET is the DIS-compliant
simulator that provides a portal into BDS-D. These three systems form the foundation for

constructing the World Modeler.

9

10

III. WORLD MODELER OVERVIEW

The World Modeler was designed at the Department of Computer Science, Naval
Postgraduate School, as a proof of principle to allow Janus, a monolithic combat model, to
interact in the Battlefield Distributed Simulation - Developmental environment (BDS-D).
The World Modeler runs on its own Silicon Graphics platform with a TCP/IP connection
to Janus and an UDP/IP connection to BDS-D. Janus and the World Modeler communicate
with a local protocol; BDS-D and the World Modeler use Distributed Interactive
Simulation (DIS) protocols. The architecture chosen for the World Modeler allows for
reading and writing to associated message buffers in parallel with the main application loop
of the World Modeler. Storage of information is patterned directly after NPSNET, and
several NPSNET algorithms are used. In this section, we discuss the software structure
used to track information about the virtual world, how we manage network traffic, and how

we efficiently control the interaction between Janus and BDS-D entities.

Construction of the World Modeler began in the fall of 1993 as part of the Army’s
Anti-Armor Advanced Technology Demonstration research effort [A2ATD]. As part of
this project, the primary purpose of the World Modeler is to allow interaction between
Janus and BDS-D entities. To do this effectively, the World Modeler must perform four
major functions: network management, dead reckon Janus entities, reconcile Janus entity
locations with the terrain, and arbitrate engagements between Janus and BDS-D entities.
Chapters IV through VII discuss these functions in detail. By performing these functions,
the World Modeler is the nexus which allows Janus to interact in the BDS-D environment.

Figure 1 and Figure 2 show the conceptual and physical architecture of the World Modeler.

The World Modeler runs on a low end Silicon Graphics (SGI) workstation, which
allows for maximum efficiency in terms of networking and parallel processing. This choice
of hardware allows the use of existing NPSNET software as necessary. Database formats
are also consistent with NPSNET. See Appendix A for further hardware and software

requirements.

JANUS

Janus Status

Updates
Manned Data
Simulator Logger
World
Modeler

i

+ DIS PDUs BDS-D Environment

e ——————————

Figure 1. Conceptual Architecture

| }
I r— 5 5 1 l | S e T A I e

: Entity / Terrain | | 1 Dead | | " Network | | rEngagemen?
I |

' Reconciliation ' ' Reckonmg ' ' Management| :'Arbltratlon|

Onentatlon Determination I Intermedxate Updates | Codes / Decodes DIS PDUSI Impacts

Velocity Computation I Turn Smoothing I Janus Status Updates I Kin Filtering

I I I
Update Filtering | PDU Creation

| [
: World: Modeler :

JANUS

Ethernet LAN

Figure 2. Physical Architecture and World Modeler Functions

e

A. INITIALIZATION OF THE WORLD MODELER

Before Janus can interact in the BDS-D virtual world, the two different

environments of Janus and BDS-D must be reconciled within the World Modeler. The

initialization process of the World Modeler performs this reconciliation (Figure 3).

1.

Load DIS-JANUS equivalence table into the World Modeler. This datafile
contains information on the different entity types that Janus recognizes as part
of its simulations. DIS entity type equivalences are matched up to each Janus
weapon system. The intent is to ensure that Janus entities are correctly portrayed
in the BDS-D environment and that BDS-D entities are correctly portrayed in
Janus. For example, we do not want Janus to mistake a BDS-D Soviet T-72 tank
with a United States Bradley Fighting Vehicle.

Load terrain datafile. Currently, both Janus terrain and BDS-D terrain are
derived from the same S1000 terrain database. Janus however, does not
explicitly track information on entity elevation values. The World Modeler
maintains a copy of the terrain to determine elevation and orientation values for
Janus entity positions and munition effects.

Establish a TCP/IP connection to Janus and a UDP/IP connection to the BDS-
D. Chapter IV discusses each of these connections in detail. Once these
connections are established, the associated message buffers begin to fill with
Janus and BDS-D entity information. .

Read the Janus message buffer and load Janus entities into the World Modeler
entity array. The array stores information on all Janus and BDS-D entities.
Janus entities are flagged to identify them as Janus because all entity
information is uniformly stored. These Janus entities are all that will participate
in the simulation. Janus does not introduce new entities during the simulation.
Read the BDS-D message buffer and load the entity array with the entities
currently active in the BDS-D world. Creation and deletion of entities in the
BDS-D world is dynamic. The World Modeler only tracks entities that are
currently being broadcasted on the ethernet.

Send Janus the current BDS-D entity dispositions. Janus acknowledges the

13

receipt of this data with a synchronization message. This message signifies the
completion of the World Modeler initialization. The World Modeler clock starts

and the main application loop begins.

JANUS |

T* | 3. Establish TCP/IP |

connection

Janus

Message
1. Load Janus-DIS 6. Update Janus Buffer
_ Equivalence Table / ‘]
|
2. Load Terrain 4. Read Buffer
Datafiles

!
/ | | |
|
I
|
1
3. Create Buffers

Entity T
Array

g—| 5. Read Buffer

World Modeler

<« _ | 3 Establish UDP/IP|_

BDS-D) * connection

Figure 3. Initialization of the World Modeler

B. WORLD MODELER MAIN APPLICATION LOOP

The main application loop continuously executes the primary functions of the

World Modeler (Figure 4). This loop continues until the simulation is terminated either

from Janus or the World Modeler. Another BDS-D application can not terminate the Janus-

BDS-D connection.

When the simulation starts, the Janus clock runs a heartbeat faster than the World
Modeler. The purpose of the heartbeat is described in the following paragraphs. The
heartbeat, a variable named JANUS_TIME_INTERVAL, can be set to different lengths
prior to the simulation. The heartbeat can not be adjusted dynamically during the
simulation. Four seconds appears to be a reasonable heartbeat for scenarios up to 200 Janus

entities.

1. Process Janus Messages

The World Modeler reads Janus messages from the Janus message buffer. If the
message deals with entity states, then the entity array is updated. If the messages deal with
munition effects such as fire and detonations, appropriate Fire and Detonation packet déta
units (PDU’s) are created. Since Janus is running a heartbeat ahead of the World Modeler,
these events may not have occurred yet ih World Modeler time. Time stamps on the
message and the World Modeler clock are compared. If the event occurred, these PDU’s
are written directly to the Ethernet and broadcasted to the BDS-D environment. If the
events have not occurred yet, they are placed in an event queue. The queue is read later in

the application loop.

2. Update Janus about BDS-D Entities

The World Modeler keeps track of when it last updated Janus. If the last update
occurred in less than a heart beat, Janus is not updated. If the time interval is greater than
the heartbeat, the World Modeler updates Janus with information on BDS-D entities. The
most current information about BDS-D entity disposition is passed to Janus. Also, any new
BDS-D entities that may have entered into the simulation are also passed onto Janus. In this
case, the heartbeat is used to limit the number of updates Janus receives. Janus needs time

to do internal algorithms such as line of sight and Ph/Pk calculations. Continual updating

15

of Janus about BDS-D entities may slow Janus down. The heartbeat interval is designed to

keep Janus informed but not bogged down.

3. Process BDS-D Entity Information

The World Modeler reads the BDS-D message buffer containing PDU’s, parsing
the PDU’s by type. Entity State PDU’s are used to update the entity array. If a new entity
has entered the simulation, it is added to the array. Fire and Detonation PDU’s are also
processed. These PDU’s are filtered to see if they have any effect on Janus entities. If they
do not, they are discarded. If they effect Janus entities, that information is processed and

Janus is immediately updated. This process is discussed further in Chapter VII.

4. Update World Modeler Clock

The current time is assigned to the World Modeler clock. This creates a time delta

between the current time and the time that the entity array was last updated.

5. Dead Reckon Entities

The World Modeler dead reckons entities based on their last known position,
orientation and velocity. Entity and terrain reconciliation also occurs during this phase.
Further discussion of dead reckoning and entity/terrain reconciliation can be found in

Chapters V and VI respectively.

6. Update BDS-D Virtual World

The World Modeler is responsible for sending Entity State PDU’s to BDS-D within
the DIS 2.0.3 standards [IST93a]. To accomplish this task, the World Modeler scans the
entity array to determine whether any Janus entities meet the criteria for the generation of
an Entity State PDU. If so, the World Modeler creates and sends the PDU. The World
Modeler then reads the Janus event queue which contains Janus fire and detonations events
in PDU format. If the current time is greater than the event time, the PDU’s are broadcasted
onto the net. If not, they stay in the queuc to be screened the next time through the main

application loop.

16

7. Refresh World Modeler Map

The final portion of the loop is to redraw the World Modeler two dimensional

display based on the most current information in the entity array. The cycle then begins

again.

C.

—_»| Process Janus Messages

'

Heartbeat Interval
Exceeded ?

Yes

Update Janus

¢No

Process BDS-D DIS PDU’s

i

Update Clock

'

Dead Reckon Entities

'

Update BDS-D

'

Refresh 2D Map

Figure 4. World Modeler Main Application Loop

SUMMARY

The World Modeler establishes a ground truth environment to process both Janus

and BDS-D entity data and events. Through its process, the World Modeler delivers the

necessary functionality to integrate Janus and BDS-D.

IV. NETWORK MANAGEMENT

The World Modeler interconnects Janus and the BDS-D environment,
communicating with both simulations in an efficient and timely manner. Without proper
communication links, the World Modeler could not complete its other functions. Between
Janus and the World Modeler, the Transmission Control Protocol / Internet Protocol (TCP/

IP) is used. The World Modeler connects to BDS-D via User Datagram Protocol (UDP/IP).

A. -~ NETWORK ARCHICTECTURE

Both communication connections are established during the initialization of the
World Modeler. Associated message buffers are created to store incoming data from Janus
and BDS-D. The actual reader processes which load the buffers run in parallel to avoid
blocking the main application while messages are coming in. As necessary, the World
Modeler reads from these buffers. The World Modeler will write to both network ports as

necessary (Figuré 5).

B. CONNECTION BETWEEN JANUS AND THE WORLD MODELER

Once established, the World Modeler utilizes the TCP/IP connection throughout the
entire simulation. The intent of this communication link is to provide a point-to-point,
reliable connection that ensures the delivery and receipt of data between the two systems
(Figure 6). TCP/IP ensures retransmission of lost messages through low-level

acknowledgment between the two communication hosts [Locke94].

The specific TCP/IP port, a value that distinguishes between networked
applications on the same host, must be agreed upon between the machines running the
World Modeler and Janus. Currently, the code written defaults to the éame port. A
command line option exists in the World Modeler to allow the user to set the port number.
In Janus, a script file may be modified to change the IP address and port number of the

machine running the World Modeler. This allows multiple Janus / World Modeler pairs.

19

C. CONNECTION BETWEEN BDS-D AND THE WORLD MODELER

Once established, the World Modeler utilizes the UDP/IP connection throughout
the entire simulation. The DIS protocol standard requires DIS-compliant combat
simulations provide five basic services: data transfer, delivery, best effort service, packet
integrity, and minimum performance levels [IST93a]. The NPSNET libraries used, in
conjunction with the IRIX network routines, provide the necessary functionality [Zes93].
The current software supports both broadcast (one-to-all) and multicast (one-to-some)

communications.

_ Janus
Janus Message Buffer write()
I Janus (TCP/IP)

read_msg_buff()

parse_net_pdus()

f DIS (UDP/IP)
PDU Message Buffer write_pdu()

ETHERNET

Figure 5. Data Flow in and out of the World Modeler

World
Janus Janus

Modeler

World

Modeler

5 ETHERNET ETHERNET
- > | =
Conceptual Connection Actual Connection

Figure 6. Janus - World Modeler Network Connection using TCP/IP

D. UPDATING THE BDS-D ENVIRONMENT

The World Modeler is responsible for informing the BDS-D environment about all
Janus entities and their actions in accordance with the DIS protocol standard. The World
Modeler dead reckons Janus entities once every cycle of the main application loop. The
World Modeler then updates BDS-D with Janus entity state information if threshold
requirements have been exceeded for sending Entity State PDU’s. These threshold values
are in accordance with Section 7 of [IST93b]. If a threshold is exceeded, an Entity State
PDU is sent for that e'ntity. If a Janus entity has not changed state for over five seconds, an

Entity State PDU is sent to inform BDS-D that it remains an active entity in the simulation.

Janus also transmits events such as munition firing and detonations. The World
Modeler converts these messages to the appropriate PDU type and checks the message
time. If the event has occurred in real time, the PDU is written immediately to BDS-D. If
itis a future event, the PDU is put on an event queue. The World Modeler reads the queue
once every cycle of the main application loop, comparing the current time with the time on
the PDU’s in the queue. If the current time is greater than the PDU’s time, the PDU is

written to the net.

E. UPDATING JANUS

Janus does not need updates as often as the BDS-D environment. A heartbeat
variable called JANUS_TIME_INTERVAL is used to determine whether to update
Janus. The intent of the heart beat is discussed in Chapter 111, Section B. The World
Modeler updates Janus about all DIS entities once every heart beat. IF DIS Fire and
Detonation PDU’s affect a Janus entity, they are sent to Janus immediately. This is

discussed further in Chapter VII.

F. SUMMARY
The World Modeler effectively maintains two network connections, each having a
different protocol. Through these links, the World Modeler efficiently manages and

controls data flow between Janus and the BDS-D environment.

2]
[

V. DEAD RECKONING IN THE WORLD MODELER

Dead Reckoning is the process of calculating entity position and orientation based
on last known entity posture and predetermined dead reckoning algorithms. The intent of
dead reckoning is to limit the number of entity state broadcasts on the network, while still
maintaining an accurate posture of remotely-controlled entities. The World Modeler

attempts to maintain the most accurate posture of both BDS-D entities and Janus entities.

A. DEAD RECKONING BDS-D ENTITIES

Entity State PDUs (ESPDU) update the World Modeler’s entity array with the most
current BDS-D entity posture. In between receiving these PDU’s, the World Modeler dead
reckons a BDS-D entity’s posture using the Remote Vehicle Approximation model in

accordance with Section 7, of [IST93b].

1. Process Entity State PDU

The World Modeler reads the PDU message buffer and updates the entity array data
with the ESPDU data. Dead reckoning parameters such as posture, velocity, and
acceleration are assigned from the ESPDU. The PDU also contains information about
which type of dead reckoning algorithm should be used for approximating the entity’s
location. These parameters are used to dead reckon the entity’s posture in between
receiving PDUs. A variable called lastPDU is updated with the current clock time

identifying when the entity information was received.

2. Update Entity Positions

The World Modeler updates its clock, and dead reckons the BDS-D entities. The
entities are dead reckoned based on their associated dead reckoning parameters and
posture. First a time difference is calculated by subtracting lastPDU from the current time.
Next, the entity’s posture is updated based on the dead reckoning parameters and the time
difference.(Eq 1.1)

posture = posture + dead_reconking_parameters*delta_time (Eq 1.1)

23

3. Updating Janus

In between updates from BDS-D, the World Modeler continues to dead reckon the

BDS-D entitics. The World Modeler updates Janus with the dead reckoned postures.

B. DEAD RECKONING JANUS ENTITIES

The World Modeler is different than other simulators in BDS-D: It does not
maintain a high fidelity model of the entities it manages. Janus maintains the high
resolution model of its entities, forcing the World Modeler to maintain a ‘private’ model of
Janus entity movement. The World Modeler keeps two entity postures, the private model’s
posture and the dead reckoned posture using the DIS algorithms. When these values differ
by an amount greater than the established DIS dead reckoning thresholds, ESPDUs are sent

to update BDS-D with the private model’s values.

1. Private Model of Janus Entities

The private model is intended to be a better approximation of Janus entity
movement than the DIS dead reckoning algorithms. This model is based on the information
that Janus sends the World Modeler. First order linear approximation is used to model the
Janus entity movement. The most recent information passed on a Janus entity is considered
a future posture. The private model uses this as a target posture for the linear
approximation. The Janus velocity vector does not account for the z vector component.

Hence, there is some drift in the private model.

2. Calculating Janus Entity Positions

The World Modeler stores Janus entity information in the same manner as BDS-D
entities. To keep the entity array uniform, Janus entity messages are converted into Entity
State PDUs (ESPDU) and processed the same as a BDS-D ESPDU. However, the Janus
entity information is used differently in order to maintain both the private and dead

reckoned models.

24

Figure 7 shows the process of updating the two models’ postureé and sending out
ESPDUs as necessary. The variable drpos contains the dead reckoning model’s posture of
the entity. drparam variables are used to calculate the dead reckoned model’s posture. This
model represents the model that other BDS-D simulators use to dead reckon Janus entities.

The data member posture contains the private model’s posture. target variables are
used to calculate the private model’s projected posture. The variable remaining_time is the

time step used for first order linear smoothing of the private model’s velocity vector.

3. Updating BDS-D
During the function call moveDR(), the function delta_send() determines if the
posture values of the private and dead reckoned model exceed the thresholds. If so, an

Entity State PDU is sent for that Janus entity.

C. SUMMARY

The World Modeler dead reckons BDS-D entities in accordance with the current
DIS standards and Janus is updated with these dead reckoned postures. For Janus entities,
the World Modeler maintains a private model and a dead reckoned model. The private
model is a first order approximation of the Janus movement. When the private and dead
reckon models’ postures exceed threshold levels, the World Modeler issues an Entity State

PDU for that Janus entity in accordance with DIS specifications.

Janus Ground Entity Msg.

read_msg_buff()

‘Process Janus Message

* entitystateupdate() //Updates Entity array values
remaining_time = lastPDU + heartbeat - current_time
target_posture = PDU.location

target_velocity = PDU.velocity
velocity = target_posture - posture/remaining._time
drparam.xyz = velocity
drpos = posture
lastPDU = current_time

Jdgdessaw ou

Heartbéat
Interval Update_Janus

Exceeded?

dump

sync_Janus_vehicle()
posture = target_posture
velocity = target_velocity
drparam.xyz = velocity

Process DIS PDU’s
Update Clock

Dead Reckon Entities

Threshold
‘ Exceeded? posture = drpos + drparam * deltatime

delta_send() //check difference between
posture and drpos

Update BDS-D
entitystate

drpos = posture
lastPDU = current_time

Figure 7. Maintaining the Private and Dead Reckon Postures of Janus Entities

20

VI. JANUS ENTITY/TERRAIN RECONCILIATION

Entity/terrain recanciliation is the World Modeler function that resolves the
differences between the BDS-D visual terrain databases and the Janus terrain files. There
are three fundamental tasks to this function. First is the computation of entity orientation in
the BDS-D environment. Second, to ensure compliance with the DIS standard, entity speed
is converted to a three dimensional velocity vector. Third, Janus UTM coordinates are

transformed to BDS-D geocentric Cartesian coordinate system.

A. COMPUTATION OF JANUS ENTITY ORIENTATION

Janus does not track entity pitch and roll. To give realism to the appearance of
entities in manned simulators of BDS-D, a copy of the visual database is maintained in the
World Modeler. Entities are “snapped” to the visual terrain, i.e., the elevation coordinate,
pitch and roll of the underlying terrain is assigned as the entity’s orientation. This ensures

visual consistency with the manned simulator.

1. Janus Entity Posture

Janus maintains easting and northing position values using the UTM coordinate
system with the distance of one unit equal to a kilometer. Janus maintains only entity
headings in radians with zero radians to the East. Positive rotation is in the counter-clock

direction.[JANU93] Elevation, pitch, and roll values are not explicitly kept.

2. BDS-D Entity Posture

BDS-D, in accordance with DIS Standards, maintains X, y, and z values using the
right-handed Geocentric Cartesian coordinate system, referred to as the World Coordinate
System. One unit is equal to a meter. An entity’s orientation in BDS-D is defined by three
Euler angles in radians, using the right-handed coordinate system, and with positive

rotation in the clockwise direction. [IST93a]

3. World Modeler Entity Posture

The World Modeler must reconcile these two disparate methods of describing an
entity’s posture. To do this, the World Modeler maintains all entities, Janus and BDS-D, in
the same fashion. Position values, referred to x., y, and z, are stored using the UTM like
coordinate system with one unit equal to a meter. Entity orientation is defined by three
Euler angles in degrees, using the right-handed coordinate system, and with positive
rotation in the counterclockwise direction. This method of describing an entity’s posture

was chosen to take advantage of existing NPSNET algorithms.

4. Conversion Between BDS-D and World Modeler Posture

When a BDS-D Entity State PDU is read from the message buffer, the network code
has already converted the location to UTM coordinates in meters (see Section C of this
chapter). The World Modeler still has to convert the Euler angles. The following equations
are used to make the conversions. RAD_TO_DEG is an eight decimal precision float value
to convert radians to degrees.

posture.hprlHEADING] = (epdu->enﬁty_oriemmion.psi > 0)?
- (epdu->entity_orientation.psi + 2*M_PI)*RAD_TO_DEG:
- (epdu->entity_orientation.psi)*RAD_TO_DEG;
posture.hpr[PITCH] = epdu->entity_orientation.theta*RAD_TO_DEG:
posture.hprlROLL] = epdu->entity_orientation.phi*RAD_TO_DEG;

The reverse process is done when a Janus entity’s orientation is sent out as part of
a PDU. DEG_TO_RAD is an eight decimal precision float value to convert degrees to
radians.

epdu.entity_orientation.psi = -posture. hpr[HEADING]*DEG_TO_RAD:
epdu.entity_orientation.theta = posture. hpr|[PITCH]*DEG_TO_RAD:
epdu.entity_orientation.phi = posture.hpr|ROLL)*DEG_TO_RAD:

5. Conversion Between Janus and World Modeler Posture

When a Janus entity message is read from the message buffer, it only contains the
X, y and heading values of the entity’s posture. The World Modeler, using the functions in

msg_code.C, converts these messages into ESPDU’s. First, the x and y values are

28

multiplied by one thousand to convert them to UTM units that are in meters. The heading
is converted to degrees and reduced by ninety degrees. This is done to take advantage of
the NPSNET function, grnd_orient(), which calculates the pitch, roll, and elevation values
" based on the x, y and heading values. The elevation value for a ground entity is given the
elevation value of the terrain at the given x and y location. The proper pitch and roll values
in degrees is returned. The orientation components are converted back to radians; the
heading is negated. Now the posture is described in the same fashion as a BDS-D entity.

This Janus Entity State PDU is then processed in the same fashion as a BDS-D ESPDU.

The reverse process is used to convert BDS-D entity information, which is stored
in the World Modeler fashion, to Janus pbsture fashion. Only the x, y and heading values

are passed since this is all that Janus uses.

B. CREATING A THREE DIMENSIONAL VELOCITY VECTOR

BDS-D ESPDUs arrive with all three component velocity vectors in meters per
second. The World Modeler maintains the information the same way and.direct assignment

from the PDU occurs.

Janus messages arrive with a velocity vector which is in kilometers per hour.
Functions in msg_code.C convert the two dimensional velocity vector into its x and y
components in units of meters per second. Zero is assigned to the z velocity vector. This
information is assigned the Janus Entity State PDU which is processed in the same fashion

as a BDS-D ESPDU.

When it is time to update Janus about BDS-D entities, the World Modeler computes

the magnitude of the velocity vector. This value is passed to Janus.

C. COORDINATE CONVERSION

Janus and BDS-D terrain are derived from the same S1000 terrain database. The
World Modeler maintains a copy of the terrain to determine elevation and orientation

values for Janus entity positions and munition effects.

29

1. Grid Coordinate Translation Between Janus and the World Modeler

The origin of the Janus coordinate system is located at the lower-left corner of the
map, labeled with UTM coordinates. The terrain database that the World Modeler uses is
also in the lower-corner, but in a different UTM coordinate. To resolve this difference, the
World Modeler’s origin is translated to the Janus origin, in meters. The following equations
show how the World Modeler origin is translated to equal the Janus terrain origin.

G_WM_origin.easting = G_WM_origin.ter_east - G_WM_origin.jan_east;

G_WM _origin.northing = G_WM_origin.ter_north - G_WM _origin.jan_north;

2. Converting Entity Positions Between Janus and the World Modeler

When a Janus message is read by the World Modeler, the easting and northing
values of the entity are multiplied by 1000, converting their units to meters. The World
Modeler origin is then added.

position.x = (mess->easting)*1000 + G_WM _origin.easting;

position.y = (mess->northing)* 1000 + G_WM _origin.northing;

When a message is written to Janus from the World Modeler, the opposite
conversion occurs.

mess.casting = ¢position.x - G_WM_origin.easting)/1000.0f;

mess.northing = (position.y - G_WM_origin.northing)/1000.0f;

3. Converting Entity Positions Between World Modeler and BDS-D

Network level code converts incoming geocentric Cartesian coordinates to UTM
coordinates as they arrive. When the World Modeler reads the PDU message buffer, all
positions arc in the correct format. When the World Modeler sends PDUs to BDS-D, the

network code converts the out going coordinates from UTM to geocentric coordinates.

D. SUMMARY

The World Modeler successfully resolves the disparity between the manner that

Janus and BDS-D describe an entity’s posture. The World Modeler also supplies the

30

missing elevation, pitch and roll values to the Janus entities. The result is Janus entities

appearing properly in BDS-D.

VII. EVENT ARBITRATION

Event arbitration is the function of the World Modeler that resolves the relationship
between Janus and BDS-D entities when they are shooting at each other. Four different
possibilities can arise which the World Modeler must arbitrate: Janus targeting a Janus
entity, Janus targeting a BDS-D entity, BDS-D targeting a Janus entity, and BDS-D
targeting a BDS-D entity.

One of the integral aspects of DIS architecture is that a targeted entity determines
the effect of the munition’s impact. This differs from Janus, which is a self-contained
combat model, arbitrating interaction between all of its entities. The implementation
requires Janus to track BDS-D entities. However, Janus is not able to move or destroy them.
Janus must work through the World Modeler to interact with the BDS-D entities. Thus,
BDS-D entities tracked by Janus are referred to as ‘ghosts.” The following engagements

refer to both direct and indirect fire engagements.

A. JANUS SHOOTS BDS-D

Janus sends the World Modeler a fire and detonation message when it shoots a
BDS-D entity. The World Modeler creates Fire and Detonation PDU’s and broadcasts them
to the BDS-D world. The-simulator controlling the targeted entity determines the effect of
the munition’s impact. This effect is reflected in the subsequent Entity State PDUs
(ESPDU) trom the targeted vehicle. If the vehicle was destroyed, the World Modeler

updates Janus, which in turn updates the representation of the ghost vehicle within Janus

(Figure 8).

B. JANUS SHOOTS JANUS

In this situation, Janus does determine the results of the engagement. The fire and
detonation message still gets passed to the World Modeler, which creates the appropriate
PDU’s. This allows the visual effects of the engagement to be displayed in BDS-D. If the

targeted vehicle is destroyed, subsequent ESPDUs reflect the change in entity state.

33

Janus shoots BDS-D entity. Janus updates representation
of BDS-D ghost entity.
Janus fire and
detonation message
message

World Modeler broadcasts World Modeler updates entity
messages to BDS-D. array and Janus.

Fire and

Detonation PDUs

BDS-D simulator controlling
targeted entity determines effect of
the munition.
If entity destroyed:
change ESPDU appearance

ESPDU

Figure 8. Janus Shoots BDS-D Entity

C. BDS-D SHOOTS JANUS

BDS-D simulators generate a Fire and Detonation PDU when it shoots a Janus
entity. Current implementation has the World Modeler determining the effects of the
impact. The World Modeler tells Janus that the entity is dead. Subsequent ESPDUs of that
Janus entity reflect the change in status. Future implementation will have Janus receive the

fire and detonation information to make its own determination of the munition’s effects.

D. BDS-D SHOOTS BDS-D

When BDS-D entities engage each other, the World Modeler filters out the Fire and
Detonation PDUs. Hence, Janus does not receive any information on the engagement.
Janus receives the updated entity state information on the targeted vehicle based on the
engagement’s outcome. If the entity is destroyed, Janus changes the representation of the

internal ghost.

34

-

E. JANUS MUNITION SELECTION

Janus and the World Modeler both have the same equivalence table which stores
Janus munition types‘and their DIS equivalents. When Janus fires a weapon, the munition
is cross-referenced in this table so that the corresponding DIS munition entity type is

broadcasted to the net.

If Janus fires a precision guided munition, the World Modeler generates ESPDUs
to visually depict the missile flying in BDS-D. At impact, the missile is destroyed by the

World Modeler.

F. SUMMARY

The World Modeler successfully generates the necessary PDUs to allow Janus to
interact with BDS-D entities. As per DIS standards, Janus does not kill ghost BDS-D
entities within Janus until updated by the World Modeler. The World Modeler currently
determines if a BDS-D entity destroyed a Janus entity. Future implementation strives for

Janus to determine the fate of its own entities.

35

36

VIII. RESULTS

A. PERFORMANCE

There are several aspects of performance that can be measured in reference to the
World Modeler. The areas of analysis can vary from the network connections to handling
of data within the World Modeler. We have chosen to limit our scope of evaluation to the

output of Entity State PDUs (ESPDU) and the visual display of Janus entities in BDS-D.

1. Testing World Modeler Entity State PDU Output
Janus updates the World Modeler infrequently. This makes the World Modeler
responsible for sending ESPDUs to BDS-D in accordance with DIS standards. The World

Modeler was tested to ensure that the DIS standards were met.

a. Methodology

NPSNET was used to visually see the Janus entities in BDS-D. The World
Modeler ran on a Silicon Graphics Indy workstation with a 100 MHZ IP22 Processor and
64 Mbytes of main mémory. The Janus update interval was set to four seconds.

Different scenarios were used to test ESPDU output. All scenarios were run

for five minutes (Table 1).

Red Red Red Blue Blue Blue

Scenario Ground | Air Soldier | Ground Air Soldier Total | Interaction
A ! 0 0 | 0 0 2 None
B 0 ! 0 6 3 5 15 None
C 19 0 0 17 0 0 26 Combat
D 96 17 10 40 7 28 198 Combat

TABLE 1: Scenarios Used to Test Entity State PDU Output

Scenarios A and B were used to test ESPDU output for static and moving
Janus entities; with and without turrets rotating. Scenarios C and D are more in line with an

actual Janus scenario. They were used to analyze the scalability of ESPDU output.

37

The DIS standards state that the local simulation manager determines the
thresholds for sending out ESPDUs. When the standard is not set, default values are used.
Default values include: one ESPDU every five seconds for static vehicles; one ESPDU
every time the entity has moved more than a meter from the last ESPDU position sent; one

ESPDU every three degrees of rotational movement. [IST93a]

The default standard of one ESPDU for every meter change in position
seemed excessive. For the tests, we chose to increase the position threshold to three meters
and made an additional test run at the higher one meter standard. The intent here was to see

if the visual output was degraded by this change in threshold.

b. Results

The World Modeler met the default standards for sending out the necessary
ESPDUs (Table 2). There was no visual degradation using the three meter position
threshold and ESPDU output was decreased by almost a third (compare runs 3 and 4).
Comparing runs 3 and 5, it is noted that there was no major increase in ESPDU output for
Janus entities that were moving with their turrets rotating. Because of this, the remaining

runs include rotating turrets.

Scenario B had some entities that did not have turrets. There was a slight
decrease in the total ESPDU output for this larger scenario (Compare runs 2 and 6; and runs
3 and 7). Run 7 has almost double the nurﬁber of PDUs per second compared to run 3. This
can be attributed to the fact that one fourth of the entities in run 7 were air vehicles. These

vehicles move quicker which cause ESPDUS to be sent more often.

Runs 9 and 10 were combat scenarios. The ESPDU traffic was less because
not all entitics are moving in an actual planned scenario; and killed entities do not move.

These are morc likely output levels to expect, since they resemble actual Janus scenarios.

The main application loop must stay below the Janus update interval. In

these tests, the application loop time stayed well below the interval of four seconds.

K1)

Scenario Average Apblicati
ication
position threshold . ESPDU’s/ | ESPDU’s per pphication
Run equal to three Activity . Loop Time in
. Second Entity per
meters unless Seconds
otherwise noted Second
I A static 0.394 0.197 0.014
2 A static; rotating turrets 1.280 0.640 0.014
3 A moving; turrets static 6.066 3.033 0.014
4 A moving; turrets static 17.700 8.850 0.014
posture threshold
equal | meter
5 A moving, rotating turrets 17.70 3.080 . 0.014
6 [B static, rotating turrets 8.145 0.543 0.015
7 B moving, rotating turrets 88.800 5.920 0.020
9 C small engagement 80.028 2.223 0.021
10 D large engagement 161.568 0.816 0.200

TABLE 2: World Modeler Entity State PDU Output

2, Visual Display of Janus Entities in BDS-D

Janus entities were viewed in the BDS-D environment through the portal provided
by the NPSNET stealth vehicle. Methodology for testing was by viewing the entity
movement and judging if it looked realistic to the man-in-the-loop.

For runs one through nine, the entities all appeared to move in real-time with very
minimal jumping. The ground entities appeared to be moving along the ground. When they
were moving up and down a hard slope, they did move into the ground. This arises from
the dead reckoning problems with the elevation velocity vector. Entities do not make
smooth turns. They make abrupt turns at the nodes where Janus changes the entity’s
heading.

Run ten caused the frame rate of NPSNET to slow down to an average of 0.6 frames
per second. This made the Janus entity movent not appear in real-time. We attributed this

to the viewing application’s ability to process the number of entities in scenario D.

39

Overall, the movement appeared realistic. A man-in-the-loop probably would have
judged the Janus entities to be other man-in-the-loop simulators. Visual discrepancies

could have been excused to the portal that viewed the BDS-D environment.

B. ACHIEVEMENT OF GOALS

Janus entity movement appears in real time. The World Modeler is able to manage
large number of entities, keeping both Janus and BDS-D updated with the other entities.
However, Janus entity response to BDS-D entities appears slow. When an enemy BDS-D
entity drives up to a Janus entity, the Janus entity will detect its presence immediately, but
not take action for sometimes up to twenty seconds. We attribute this to internal Janus
algorithms and something to look at for future work. BDS-D entities can shoot and kill

Janus entities in real time.

C. SUMMARY

The major goal of integrating Janus entities in BDS-D was achieved. The World
Modeler successfully. performs its functions, as outlined in Chapters IV though VII,
allowing real-time interaction between Janus and BDS-D entities. This interaction occurs

in both the BDS-D environment and in the Janus Combat environment.

40

IX. CONCLUSIONS AND AREAS FOR FUTURE RESEARCH

A. CONCLUSIONS

This research effort shows that closed combat models such as Janus can be
enhanced to interact with DIS-compliant combat simulations through a software
interface. The World Modeler is the interface which provides connectivity, data translation,

and event arbitration between Janus and BDS-D in real-time.

B. SPECIFIC CONTRIBUTIONS OF THIS WORK

The World Modeler provides insight as to whether a stand alone interface versus a
built-in interface is the appropriate approach to providing interoperability between the two
disparate combat simulation models. Though not seen in this research effort, processing
time within the World Modeler may become an issue when large combat simulations
occur.The current implementation provides for distribution of data proceésing and minimal
modifications to Janus.

The Janus combat model is enhanced by this integration of BDS-D. Previously, the
only human interaction provided by Janus was the ability to position and maneuver forces
through the puck interface. Choice of targets, engagement criteria, and weapons selection
was all determined by Janus. The BDS-D integration provides the added value of human
initiative into the Janus environment. This paramount combat multiplier now can be studied
in the Janus combat model. |

Incorporation of Janus into BDS-D allows the introduction of entities controlled by
an accredited combat model to interact in the DIS environment.This provides a means of

generating large numbers of entities in BDS-D for training and tactical development

purposes. Also, this provides a visualization tool for analysts.

C. AREAS OF FUTURE REASEARCH

1. Implement Reactive Behaviors

Janus entities should look and act as realistic as possible in relationship to man-in-
the-loop combat simulators operating in BDS-D. Currently, Janus entities do not show
reactive behaviors in relationship to their environment. Janus entities go where they were
scripted in the Janus scenario. They drive through trees, other entities, and make no reactive
behavior to incoming fire. Janus entities could be made to look more realistic in BDS-D if
obstacle avoidance behavior and battle-drill type behavior were incorporated in the Janus
model. Whether this change is something that should occur in the World Modeler or in the

Janus model is an interesting issue.

2. Increased Fidelity of Discrete Event Arbitration

Current implementation of event arbitration does not address the issue of closely
coupled Janus and BDS-D entity interaction. Current update intervals of the BDS-D
environment to Janus is four seconds. This means that Janus may wait up to four seconds
before it is informed that one of its entities is being attacked. A minimum of another four
seconds expires before Janus sends a response to the event. The World Modeler clock,
running up to four seconds behind Janus, waits to send the message to BDS-D until the
Janus message time is equal to the World Modeler clock. Thus, a minimum of twelve
seconds elapses between the BDS-D action and the Janus reaction. This' makes Janus
entities an easier target in BDS-D. Future work could analyze the current architecture for
handling event arbitration and propose alternative techniques to enhance closely coupled

Janus/BDS-D engagements (Table 3).

Event Time in
seconds
World Modeler receives Fire PDU 0
World Modeler updates Janus 0-4

- TABLE 3: Janus Response Time to BDS-D Action

42

Event 322:’1:12
Janus sends response to World Modeler 4-8
World Modeler sends response PDUs 4
Total time elapsed 8-16

TABLE 3: Janus Response Time to BDS-D Action

3. Sensor Modeling

Current message traffic between Janus and BDS-D is limited to weapon’s fire,

detonation of munitions, and entity state information. Janus and BDS-D provide for a large

number of sensor data that could be tapped into. Implementation would be similar to the

current technique of processing the other messages. This would enhance and increase the

robustness of both combat models.

43

44

APPENDIX A. WORLD MODELER USER’S GUIDE

Janus and the World Modeler work together to allow Janus to interact in the BDS-
D environment. A set of procedures is used to start both Janus and the World Modeler. Both
Janus and the World Modeler have the ability to time out while waiting for the TCP/IP
connection between them. Because of this, the following procedures was outlined to insure
that someone unfamiliar with the Janus-BDS-D connection could start the processes. These
procedures are based on Janus being on a Hewlett Packard Unix based platform. The World
Modeler is on an SGI platform with Unix 5.2 and Performer1.2. Recommended hardware

for the World Modeler is a SGI Indy R4000 SC and 64MBytes of main memory.

A. STARTING JANUS

[a—

. Login on the Hewlett Packard which runs Janus 4.0 with Rand modifications.
2. A blue ¢ shell window should pop up. If so, continue to step 3. If not:

» First you need an xterm or ¢ shell. To do this, click on the computer icon located
on the bar on the bottom of the screen. This gives you an hpterm.

* Type ‘jwan’. This is an alias that gives you a c shell. You can get a larger font
by putting the mouse in the ¢ shell window and pressing the control key and
the right mouse button. You do not need the hpterm anymore. Do the rest of
the work out of the c shell.

3. You should be in the /work/janus directory. Change directory to the Programs

directory. You are now in /work/janus/Programs directory.

Edit the file JLINKWM.DAT.

>

* Find “net.work worldmodeler NPSWM <machine name> 3001 1.

* Change the machine name to the machine you plan to run the World Modeler
on. Example: “network worldimodeler NPSWM elsie 3001 1”.

¢ Save the file.

5. Inyour c shell, type ‘janus’ and hit return.

6. Enter 126 for the scenario and hit return. You can run any scenario; 126 is good

45

10.

11.

12.

13.

14.

15.

16.

for your basic demo. 133 or 134 is also good for your basic demo.
Enter 99 for the run and hit return.

Press enter to continue.

Press the ‘Numeric Enter’ three times. Janus is now initializing.
Click on the two Janus icons and resize the windows.

When initialization is complete, the maps will be displayed in both Janus

windows and a control panel will appear on the ride side of both screens.

You can find the word ‘Start’ in the lower right portion of the control panel of

both Janus screens. Click on the word ‘Start’ in both screens.
Move mouse to the ¢ shell that you started Janus in.

Type ‘RR’ and hit enter.

Type ‘n’ and hit enter.

Now Wait! Go and start the World Modeler before you go any further.

STARTING THE WORLD MODELER

1.

On the SGI machine that you referenced in the JLINKWM.DAT file, change

directory to ~janus/world_modeler.

Type ‘worldm’ and hit enter. Note, this will default to exercise id 5. If you want
to run on an other exercise, add the exercise number to the command line.

Example: if you want exercise 3, type ‘worldm 3.

The World Modeler is now initializing. Size the two dimensional window and

stand by.

When the 2D window changes color and states “Waiting for Connection on port

30017, go to Thor where you are running Janus.
Put mouse in the ¢ shell that you started Janus.

Press enter and the connection between the two machine is established.

46

C. BRINGING THE SYSTEMS DOWN.

If everything is still running and you want to bring to quit, go to the World Modeler,
put the mouse in the 2D screen, and press the escape key. This should stop both the World
Modeler and Janus. If one of the systems crashed, do the following for each machine.

1. For the World Modeler, put the mouse in the 2D window, and press the escape
key. If this doés nothing, go to the window that you started the World modeler
and type ‘slay’ and enter. This should bring down both the World Modeler and
Janus.

2. If Janus did not come down, type ~C in the shell you started Janus. Now type

‘slay’. You are ready to start again.

47

138

APPENDIX B. PROTOCOL BETWEEN JANUS AND THE WORLD MODELER

This appendix contains the protocol message structure used for communication
between Janus and the World Modeler.
JANUS

\
AVA
\
BDS-D

World Modeler JANUS link message protocol.
Phases:
Janus initializes WM - JANUS initializes the WM with its objecis.
WM initializes Janus - WM initializes JANUS with DIS objects.
Janus Updates WM - JANUS status to the world modeler.
WM updates Janus - WM synchronizing JANUS.
/* note: Janus will provide the basic count of entities (generic_index)
after that the world modeler can start counting at (generic_index +1) */
#define INVALIDORIJECT -1
/* Until we know better, this is the DIS maximum name length + 1 */
#define DISNAMELENGTH 16
/* Define a rather large input buffer and do our own fiddling. */
#define BUFFERMAX 8192
/* This is the maximum number of nodes (i.e. NUMNODES, see globnode.for) */
#define NUMNODES 50 » '
/* Define this value to generate logging data. This is not yet complete
everywhere but should be added soon. */
#define LOGGING 1
/* This is the maximum number of submunitions for indirect fire. */
#define MAXSUBMUNITIONS 20
/* SYNC Message - used for various purposes to tell different processes that
we've completed whatever it is we're doing. We have different sync
message types for various purposes. */
struct msg_sync {
int msg_len; /* Length of this msg (excluding msglen) */
int msg_type; /* Msg_Sync */
b

JANUS <-> WM INITIALIZATION

Initialization of JANUS - BDS-D objects. These messages are sent during the initializa-
tion sequence only.

sfe sk e o sk ke o ok ot sk ke sk ofe ok sl ok s sl s ot st sl stesfe sk sk sk s ok sk ok ok ook sk st sk sk ok sk sk ok ok ok sk ok oK sk ok ok ok sk ok sk ok ok ok ok ok ok sk ok ok ok 3 ok ok

*/

/* Direction: JANUS -> WM

Purpose: To establish that JANUS and the WM are on the same playing
field. I've just put some random stuff in here, perhaps there should be others.

When: **Janus initializes WM**

*/

#define Msg_JANUSWM_Handshake 1000

struct msg_januswm_handshake {
int msg_len; /* Length of this message (excluding msglen) */
int msg_type; /* Msg_GroundObject */
int easting_offset; /* Easting offset in meters. */
int northing_offset; /* Northing offset in meters. */

};

/* GROUND OBIJECT INITIALIZATION
Direction: JANUS -> WM
Purpose: Initialize a ground object instance in the world modeler and
DIS. A ground object is one that doesn't fly, swim, or blow up.
When: **Janus initializes WM*
*/
#define Msg_GroundObiject 1020
struct msg_groundobject {
int msg_len; 7* Length of this message (excluding msglen) */
int msg_type; /* Msg_GroundObject */
int type_index; /* Common type index (from data file). */
int generic_index; /* The generic object index. */

float easting; /* Kilometers easting from southwest corner. */
float northing; /* Kilometers northing from southwest corner. */
float heading; /* Course radians (0 is east) */

float velocity; /* Velocity in KPH */

short status; /% Status (sec below). */

short flags; /' Object flags */
B

50

/* AIR OBJECT INTIALIZATION
Direction: JANUS -> WM
Purpose: Initialize an air object instance in the world modeler and
DIS. An air object flys and has those attributes.
When: **Janus initializes WM**
*/
#define Msg_AirObject 1021
struct msg_airobject {
int msg_len; /* Length of this message (excluding msglen) */ -
int msg_type; /* Msg_GroundObject */
int type_index; /* Common type index (from data file). */
int generic_index; /* The generic object index. */
float easting; /* Kilometers easting from southwest corner. */
float northing; /* Kilometers northing from southwest corner. */
float heading; /* Course radians (0 is east) */
float velocity; /* Velocity in KPH */

float agl; /* Above ground level. */
float roll; /* Roll of the Object*/
float pitch; /* Pitch of the Object™*/
float yaw; /* Yaw of the Object*/
short status; /* Status (see below). */

short flags; /* Object Flags */
b

/* WATER OBJECT INITIALIZATION
Direction: JANUS -> WM
Purpose: Initialize a water object instance in the world modeler and
dis.
When: **Janus initializes WM**
#define Msg_WaterObject 1022
struct msg_waterobject {
int msg_len; /* length of this message (excluding msglen) */
int msg_type; /* msg_groundobject */
int type_index; /* common type index (from data file). */
int generic_index; /* the generic object index. */
float easting; /* meters easting from southwest corner. */
float northing; /* meters northing from southwest corner. */
float heading; /* course (0 degrees is straight north) degrees */
float velocity; /* velocity in kph */
short status: /¥ status (see below). */
short flags; /* object flags™*/
b

/* LAST OF JANUS OBJECTS SENT SYNCHRONIZATION.

Direction: JANUS -> WM

Purpose: To indicate that we've sent the last of the JANUS objects to

the WM. Note that this goes into the "msg_sync" structure.

When: **Janus initializes WM**
#define Msg_Sync_Janus_Objects 1001
/* MIRROR OBJECT INITIALIZATION

Direction: WM -> JANUS

Purpose: This is a WM ground object controlled by DIS. For the time being, there isn't
stuff in here about mine clearing and the like. This is the JANUS coordinate system (i.e.
remove the offset and convert to kilometers).

When: **WM initializes JANUS**
#define Msg_DIS_GroundObject 1050
struct msg_DIS_GroundObject {

int msg_len; /* Length of this message (excludoing msg_len) */

int msg_type; /* Msg_DIS_GroundObject */

int type_index; /* Common type index (from data file). */

int generic_index; /* The generic object index. */

int side; /* What side is it on? =1 blue, =2 red. */
int mounted; /* Mounted or not. */
int mopp; /* =1 if in protective clothes. */
float easting; /* Easting in kilometers */
float northing; /* Northing in kilometers. */
float dirview; /* Direction of view. */
float orientation, /* Direction pointed. */
b

#define Msg_DIS_AirObject 1051
struct msg_DIS_AirObject {
int msg_len; /* Length of this message (excluding msg_len) */
int msg_type; /* Msg_DIS_GroundObject */
int type_index; /* Common type index (from data file). */
int generic_index; /* The generic object index. */

int side; /* What side is it on? =1 blue, =2 red. */
int mounted; /* Mounted or not. */

float easting; /* Easting in kilometers */

float northing; /* Northing in kilometers. */

float dirview; /* Direction of view. */

float orientation; /* Direction pointed. */

float agl; /* Above ground level (meters). */

float roll; /* Roll (radians). */

float pitch; /* Pitch */

float yaw; /% yaw */

b

52

/* Future definitions. */
#idefine Msg_DIS_WaterObject 1052

/* JANUS GROUND OBJECT PLAN
Direction: WM -> JANUS
Purpose: JANUS object path for ground objects. These are sent during
initialization for all objects with plans. Objects without plans are
assumed to be stationary. We send all NUMNODES each time.
*/
#define Msg_Ground_Plan 1053
struct msg_ground_plan { :
int msg_len; /* Length of message (excluding msglen) */

int msg_type; /* Msg_GroundObject */

int type_index; /* Common type index (from data file). */
int generic_index; /* The generic object index. */

int speed_type; /* Sprint or normal. */

int start_index; /* Where does this start in previous path? */

float nodex[NUMNODES]; /* X coordinates. */
float nodey[NUMNODES]; /*Y coordinates. */
short int timed[NUMNODES]; /* Time at node. */
unsigned char flags[NUMNODES]; /* Various flags. */

b

/* Types for the speed_type field above. */
#define SPEED_NORMAL 0
#define SPEED_SPRINT 1

/* END OF DIS OBJECT INITIALIZATION
Direction: WM -> JANUS
Purpose: This message is sent when the WM finishes sending objects -
to JANUS.
When: **WM initializes JANUS**
*/
#define Msg_Sync_WM_Objects 1002

/* JANUS IS READY TO GO!
Direction: JANUS -> WM
Purpose: JANUS is really done initializing and is ready to get
synchronized with the real world.
When: just after **WM initializaes JANUS**
*/
#define Msg_Sync_GO 1003

JANUS <-> WM EXECUTION

Messages exchanged during normal operations, once an entity has been
defined.

*******:k:l:*:k**ﬂt=k:l<=i<tlitlt:k=}:=I==l==112!::lt¢!==l=:!1:k:l::k:k**:k:ktli=l=***>!<****************************/
/* END OF JANUS UPDATE SET.

Direction: JANUS -> WM

Purpose: Janus sends this message when it is done with it's updates.

At this time the WM is free to start sending it's updates.

When: **Janus upates WM
*/
#define Msg_Sync_JANUS_Updates 1004

/* END OF WM UPDATE SET.

Direction: WM -> JANUS

Purpose: This is sent when the WM is done with it's updates to Janus. This kicks off the
next Janus simulation cycle. We also get the clock time so that Janus can decide what to do
if its lagging behind.

When: **WM updates JANUS**
#define Msg_Sync_WM_Updates 1005
struct msg_sync_wm_updates {

int msg_len; /* Length of this message (excluding msglen) */
int msg_type; /* Msg_GroundObject */
float clock: /* The real time clock (in seconds). */

b
/* GROUNDOBIJECT POSITION REPORT
Direction: JANUS <--> WM
Purpose: Works in both directions to
#define Msg_Ground_Update 1030
struct msg_ground_update {
int msg_len; /* Length of this message (excluding msglen) */
int msg_type; ./* Msg_GroundObiject */
int generic_index; /* The generic object index. */

float time; /* Time in minutes since start of simulation*/
float easting; /* Meters easting from southwest corner. */
float northing; /* Meters northing from southwest corner. */
float heading; /** Course (in radians, east is 0.0) */

float velocity; /* Velocity in KPH */

short status; /* Status (see below). */

short flags; /* Object flags™/

54

/* AIROBJ Update MESSAGE - tell the WM about a type of air object. */
#define Msg_Air_Update 1031
struct msg_air_update {
int msg_len; /* Length of this message (excluding msglen) */
int msg_type; /* Msg_GroundObject */
int generic_index; /* The generic object index. */
float time; /* Time in minutes since start of simulation*/
float easting; /* Meters easting from southwest corner. */
float northing; /* Meters northing from southwest corner. */
float heading; /* Course (0 degrees is straight north) degrees */
float velocity; /* Velocity in KPH */

float agl; /* Above ground level. */
float roll; /* Roll of the Object*/
float pitch; /* Pitch of the Object*/
float yaw; /* Yaw of the Object*/
short status; /* Status (see below). */
short flags; /* Object Flags*/

b

/* Update Ships and floating stuff*/

#define Msg_Water_Update 1032

struct msg_water_update {
int msg_len; /* Length of this message (excluding msglen) */
int msg_type; /* Msg_GroundObject */
int generic_index; /* The generic object index. */

float time; /* Time in minutes since start of simulation*®/
float easting; /* Meters easting from southwest corner. */
float northing; /* Meters northing from southwest corner. */

float heading; /* Course (0 degrees is straight north) degrees */
float velocity; /* Velocity in KPH */

short status; /* Status (see below). */

short flags; /* Object Flags*/
b

JANUS <-> WM Direct Fire
These go both directions for direct fire events. There is both a firing
event and splash.

******************=I=*{k***=k=k>k:i<*:k***:k***:}::k:l::k******************************/

/* Direct Fire event: Currently this goes in both directions. Later on, we need to add a
return message for a DIS object kill (or not kill) of a JANUS object. */
#define Msg_Direct_Fire 1040
struct msg_direct_fire {

int msg_len; /* Length of this message (excluding msglen) */

int msg_type; /* Msg_GroundObject */

int firer; /* Who Shot*/

int target; /* Who was the target */

int munition_type; /* What was shot */

float f_easting; /* Firer Meters easting from southwest corner. */

float f_northing; /* Firer Meters northing from southwest corner. */

float t_easting; /* Impact Meters easting from southwest corner. */

float t_northing; /* Impact Meters northing from southwest corner. */

float clock;

short status; /* Status (see below). */
short flags; /* Object Flags*/
b
/* Something impacted (could be a munition, could be a flying cow!) */
#define Msg_Impact 1042
struct msg_impact {

int msg_len; /* Length of this message (excluding msglen) */
int msg_type; /* Msg_GroundObject */
int firer; /* Who shot. */

int firedon; /* Who got shot */
int munition; /* Common type index (if any) of thing fired.
Only used for throwing cows! */
int firesequence; /* Fire sequence identification. */
int munition_type; /* What was shot */
float f_easting; /* Firing location. */
float f{_northing;
float t_easting; /* Impact meters easting from southwest corner. */
float t_northing; /* Impact meters northing from southwest corner. */

float clock; /* When it should happen. */
short status; /* Status (see below). #/
short flags; /** Object Flags */

b

56

[k sk ok ok ok ok o ok sk ks sk sk sk sk sk sk stk stk s stk ol ol sk ol stk s sk sk sk ke stk s ko s skok ok sk ok ok o

JANUS <-> WM Indirect Fire
These go both directions for direct fire events. There is both a firing
event and splash. An indirect can have a kill or a proximity impact.

ok KRR SRR R R SR Sk RIS Rk kR ko sk ko ok ok sk ook ok ok koo sk ok ok ok sk ok ok sk ok

/* Indirect fire (arty) */
#define Msg_Indirect_Fire 1041
struct msg_indirect_fire {
int msg_len; /* Length of this message (excluding msglen) */
int msg_type; /* Msg_GroundObject */
int firer; /* Who Shot */
int munition; /¥ Common type index (if any) of thing fired.
Only used for throwing cows! */
int firesequence; /* Fire sequence identification. */
int munition_type; /* What was shot */
float f_easting; /* Firer Meters easting from southwest corner. */
float f _northing; /* Firer Meters northing from southwest corner. */
float t_easting; /* Target Meters easting from southwest corner. */
float t_northing; /* Target Meters northing from southwest corner. */
float clock; /* Time this happens. */

b

/* Something impacted but we don't know on who(m), just where. Let the
targets figure it out. */
#define Msg_Proximity_Impact 1043
struct msg_proximity_impact {
int msg_len; /* Length of this message (excluding msglen) */
int msg_type; /* Msg_GroundObject */
int firer; /* Who shot. */
int munition; /* Common type index (if any) of thing fired.
Only used for throwing cows! */
int firesequence; /* Fire sequence identification. */
int munition_type; /* What was shot */
float f _easting; /* Firing location. */
float f_northing;
float t_easting; /* Impact meters easting from southwest corner. */
float t_northing; /* Impact meters northing from southwest corner. */
float clock; /* When it should happen. */
int flags; /* =0 ground impact, =1 close call. */

};

57

/* Something impactéd and we know who it impacted on and where. */
#define Msg_Kill_Impact 1044
struct msg_kill_impact {
int msg_len; /* Length of this message (excluding msglen) */
int msg_type; /* Msg_GroundObject */
int firer; /* Who shot. */
int target; /* Who (may have) died. */
int munition; /¥ Common type index (if any) of thing fired. */
int firesequence; /* Fire sequence identification. */
int munition_type; /* What was shot */
float f_easting; /* Firing location. */
float f_northing;
float t_easting; /* Impact meters easting from southwest corner. */
float t_northing; /* Impact meters northing from southwest corner. */
float clock; /* When it should happen. */

short status; /* Status (see below). */
short flags; /* Object Flags*/
b

/

e sk sk ko s sfe sk ok sk sfeskok kit skeosk stk skskosk sk sfesfe sk sk sk st sk ke sk sk sk ok sk sk sk sk sk sk s ok ok sk sk e ok sk sk sk ok sk sk sk ok ok sk ok sk ok 3k sk ok ok ok ok ke ok

WM -> JANUS Misc. Messages.

****************=I:=I<:k:k=_k=krl::ktli=k=k=¥:=k=k:ktk=k**:k=l<:F:k:k:k:k*****************************/

/* We have a correction to JANUS position for a JANUS vehicle. */
#define Msg_Fix_Janus_Position 1060
struct msg_fix_janus_position {
int msg_len; /* Length of this message (excluding msglen) */
int msg_type; /* Msg_Fix_Janus_Position */
int generic_index; /* Generic index of object. */
float new_easting; /* New position. */
float new_northing; /* New northing. */
float new_velocity, /* New velocity. */
float new_dirview; /* New direction of view. */
short flags; /* See flags below. */
b

/* If the fix should causes Janus to skip the the next segment, use that flag. */

58

#define SAME_SEGMENT 0
#define NEXT_SEGMENT 1

/

sk sk sk sk sfe sk sk o sk sfe sk s ok sk st sk ok s st e sl sk st s ok sk ok sk sk ot sk ok ok ok ok sk ok sk sk sk ok ok sk sk sk ok ok sk ok ke sk skskok ok skok ok sk sk sk ik ok

Public Status

stk sk ke ok s ke skt ek e stk st kst etk ksl ke of sk ok stk stk sk etk ok sokokoksk ok skl stk ok sk kol ok sk ok ok

/* Public status values that everyone should know about and use. Please fix
the names in status.c and the limits below when adding to this list. */

#define STATUS_DEAD -1

#define STATUS_HULK -2

#define STATUS_ONGROUND |

#define STATUS_MOUNTED 2

#define STATUS_STOPPED 3

#define STATUS_ALIVE 4

#define STATUS_INACTIVE 5

#define STATUS_AIRBORNE 6

#define STATUSMIN -2
#define STATUSMAX 6

[*flags */

#define ORIENT_VALID 0x0001
#define FLAGS_CLEAR 0x0000
#define SUBMERGED 0x0002
#define TARGETVALID 0x0004

/

sk sfe sk sk ok s sk ok sk sk sie st sk sk ske sk ok sk sk ke sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk ok sk ok ok ok ok sk ok sfe ok ok ol sk sk ok sk sk ot ke ok ook ok ok ok ok ok ok ok ok ok

End of the simulation

ok koo ok ok sl o oK R sk kR s R sk R SRR R R SR SRR SR Tl R SR ok R RSk R Rk ok sk sk kok Rk sk ok sk kK oKk kK

/* After we are all done, we need to be able to exit the program gracefully*/
#define Msg_Sync_Done 1009

59

60

[A2ATD]

[ARMY93]

[ARMY95]

[IST93a]

[IST93b]

[JANU93]

[JANU93a]

[JANU93Db}

[JANU93c]

[JANU93d]

[JANU93e¢]

LIST OF REFERENCES

U.S. Army Material Systems Analysis Activity, Anti-Armor Advanced
Technology Demonstration (A2 ATD), Experiments 2, 3, 4 and 5,
Independent Evaluation Plan and Test Design Plan, Draft, Aberdeen Proving
Ground, MD, February 1994.

Department of the Army, Army Focus 1993, US Army Publication and
Printing Command, The Pentagon, Washington DC, September 1993.

Department of the Army, United States Posture Statement FY95: Challenges
and Opportunities, Office of the Chief of Staff, United States Army, The
Pentagon, Washington DC, February 1994.

Institute for Simulation and Training, Standard for Information Technology -
Protocols for Distributive Interactive Simulation Applications, Draft 2.0.3,
Orlando, FL, May 1993.

Institute for Simulation and Training, Enumeration and Bit Encoded Values
for Use with Protocols for Distributive Interactive Simulation Applications,
Orlando, FL, June 1992.

Department of Army, The Janus 3.X/UNIX Model User’s Manual,
Headquarters TRADOC Analysis Center, ATRC-ZD, Ft. Leavenworth, KS,
May 1993.

Department of Army, The Janus 3.X/UNIX Model Data Manager’s Manual,
Headquarters TRADOC Analysis Center, ATRC-ZD, Ft. Leavenworth, KS,
May 1993. '

Department of Army, The Janus 3.X/UNIX Model Computer System
Operator’s Manual, Headquarters TRADOC Analysis Center, ATRC-ZD, Ft.
Leavenworth, KS, May 1993.

Department of Army, The Janus 3.X/UNIX Model System Design Manual,
Headquarters TRADOC Analysis Center, ATRC-ZD, Ft. Leavenworth, KS,
May 1993.

Department of Army, The Janus 3.X/UNIX Model Software Design Manual,
Headquarters TRADOC Analysis Center, ATRC-ZD, Ft. Leavenworth, KS,
May 1993.

Department of Army, The Janus 3.X/UNIX Model Software Programer’s
Manual, Headquarters TRADOC Analysis Center, ATRC-ZD, Ft.
Leavenworth, KS, May 1993.

[JOHNS]

[KARR]

[Locke94]

[MACED]

[MARTI]

[McDon93]

[Milton]

[OSBO91]

[PRAT93]

[PRAT93a])

Johnson, Carol N., Stich, Angela, Vye, Patrick, Integration of NVL-2D into
JANUS, Draft, RAND Arroyo Center, Santa Monica, CA, August 1994.

Karr, Clark R. and Root, Eric, Integrating Aggregate and Vehicle Level
Simulations, *“Proceedings of the Fourth Conference on Computer
Generated Forces and Behavioral Representation”, published by the
Institute for Simulation and Training, Orlando, FL, May 1994,

Locke, John, An Introduction to the Internet Networking- Environment and
SIMNET/DIS, Computer Science Department, Naval Postgraduate School,
Monterey, CA, August 1994,

Macedonia, Michael R., Zyda, Michael J., Pratt, David R., Barham, Paul T.,
Zeswitz, Steven, NPSNET: A Network Software Architecture for Large Scale
Virtual Environments, Computer Science Department, Naval Postgraduate
School, Monterey, CA, June 1994.

Marti, Jed, JLINK Integrating JANUS and BDS-D Project Overview, Draft,
RAND Arroyo Center, Santa Monica, CA, August 1994.

McDonough, James G., Doorways to the Virtual Battlefield, Proceedings
from “The First West Coast EFDPMA Conference and Exhibition on Virtual
Reality: The Commitment to Develop VR”, Illusion Engineering, Inc.,
Westlake Village, CA, December 1993.

Milton, Fenner, Memorandum for Deputy Undersectretary of the Army
(Operational Research), Subject: JANUS/BDS-D Interface Support for
Advanced Land Combat, Office of the Director of Defence Research and
Engineering, Washington DC, December 1992.

Osborne, William D., NPSNET: An Accurate Low-Cost Technique for Real-
Time Display of Transient Events: Vehicle Collisions, Explosions and Terrain
Modifications, Master’s Thesis, Naval Postgraduate School, Monterey, CA,
September 1991.

Pratt, David R., A Software Architecture for the Construction and
Management of Real-Time Virtual Worlds, Dissertation, Naval Postgraduate
School, Monterey, June 1993.

Pratt, David R., Lessons Learned from NPSNET, Proceedings from “The
First West Coast EFDPMA Conference and Exhibition on Virtual Reality:
The Commitment to Develop VR”, Ilusion Engineering, Inc., Westlake
Village, CA, December 1993.

62

[PRATT94] Pratt, David R., Johnson, Matthew A., Locke, John, The Janus/BDS-D

[SMIT95]

[WALT92]

[ZOBRIS]

[ZYDA92]

Linkage Project: Constructive and Virtual Model Interconnection,
“Proceedings of the Fourth Conference on Computer Generated Forces and
Behavioral Representation”, published by the Institute for Simulation and
Training, Orlando, FL., May 1994.

Smith, Richard Samuel, NPSNET: Scripting of the Three-Dimensional
Interactive Systems for use in the JANUS Combat Simulation, Naval
Postgraduate School, Monterey, CA, September 1993.

Walter, Jon C., and Warren, Patrick T., NPSNET: Master’s Thesis in
Computer Science, JANUS-3D Providing Three-Dimensional Displays for a
Traditional Combat Model, Naval Postgraduate School, Monterey,CA,
September 1992.

Zobrist, Albert L., Integration of JANUS to BDS-D: Making Detection
Consistent, Draft, RAND Arroyo Center, Santa Monica, CA, August 1994,

Zyda, Michael J, Pratt, David R, Monahan, Gregory, and Wilson, Kalin P.,
NPSNET: Constructing a 3D Virtual World, Symposium on 3D Graphics, ‘92
Proceedings, April 1992.

63

64

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station '
Alexandria, VA 22304-6145

Dudley Knox Library
Code 052

Naval Postgraduate School
Monterey, CA 93943

Chairman Ted Lewis, Code CS/Lt
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Professor D. R. Pratt, Code CS/Pr
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

Professor G.M. Lundy, Code CS/Ln
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

Dr. Jed Marti

RAND, The Arroyo Center
1700 Main Street P.O. Box 2138
Santa Monica, CA 90407-2138

Will Brooks
AMSAA
AMXST-GA
APG, MD 21028

CPT Jude Fernan
TRAC-MTRY

P.O. Box 8692
Monterey, CA 93943

65

10.

11.

12

13.

Chris Christenson

Institute For Defense Analysis
1801 N. Beauregard St.
Alexandria, VA 72311

Bill Caldwell

R&A

500 Sloat Ave
Monterey, CA 93940

LTC Michael Proctor
TRAC-MTRY
P.O. Box 8692
Monterey, CA 93943

Paul Barham

Computer Science Department
Naval Postgraduate School
Monterey CA, 93943

CPT Matthew A. Johnson
Department of EE&CS
West Point, NY 10996

606

